Chemistry of Unique Chiral Olefins. 3. Synthesis and Absolute Stereochemistry of trans- and cis-1, $1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$ -Octahydro-3, 3^{\prime}-dimethyl-4,4'-biphenanthrylidenes

Nobuyuki Harada,*,1a Nagatoshi Koumura, ${ }^{1 a}$ and Ben L. Feringa ${ }^{1 b}$
Contribution from the Institute for Chemical Reaction Science, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-77, Japan, and Department of Organic and Molecular Inorganic Chemistry, Groningen Centre for Catalysis and Synthesis, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received March 3, $1997{ }^{\otimes}$

Abstract

Unique chiral olefins with two methyl groups as the internal reference of absolute stereochemistry, $\left(3 R, 3^{\prime} R\right)$ $(P, P)-(E)-(-)-1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-octahydro-3, 3^{\prime}-dimethyl-4, 4^{\prime}-biphenanthrylidene (3) and its ($3 R, 3^{\prime} R$)- (P, P)-(Z)-isomer (4), were synthesized in optically pure form starting from $(3 R, 4 R)-(+)-1,2,3,4-$ tetrahydro-3-methyl-4-phenanthrenol (11), which was obtained by the enantioresolution using a novel chiral auxiliary of dichlorophthalic acid amide (14). The absolute stereochemistry of chiral trans-dimethyl olefin (-)-3 was determined by the X-ray crystallographic analyses of ester $(-) \mathbf{- 1 6 b}$ and $(-)-\mathbf{3}$ itself. Optically pure cis-dimethyl olefin $\mathbf{4}$ was prepared by photochemical reaction of trans-olefin (-)-3. The CD spectra of these chiral dimethyl olefins exhibit very intense Cotton effects in the ${ }^{1} \mathrm{~B}_{\mathrm{b}}$ transition region reflecting their strongly twisted π-electron systems. The CD spectrum of $\left(3 R, 3^{\prime} R\right)$ $(P, P)-(E)-(-)-3$ is almost similar in shape but opposite in sign to that of $(M, M)-(E)-1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-octahydro-$4,4^{\prime}$-biphenanthrylidene (1). Therefore, the absolute stereochemistry of $(M, M)-(E)-\mathbf{1}$ previously theoretically determined was established in an experimental manner. The CD spectrum of $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-\mathbf{4}$ is also almost similar in shape but opposite in sign to that of (M, M)-(Z)-1, $1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-octahydro- $4,4^{\prime}$-biphenanthrylidene (2). The absolute stereochemistry of $(M, M)-(Z)-2$ theoretically determined was corroborated.

Introduction

In the preceding papers, ${ }^{2}$ we have reported the synthesis, enantioresolution, circular dichroism spectra, and theoretical determination of absolute stereochemistry of unique chiral olefins, (E)-1, $1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-octahydro-4,4'-biphenanthrylidene (1) and its (Z)-isomer (2) (Chart 1). ${ }^{2 a}$ In addition, we have found a strange phenomenon that sterically hindered cis-olefin $\mathbf{2}$ easily racemizes at room temperature without formation of trans-olefin $\mathbf{1}$ as an intermediate, while trans-olefin $\mathbf{1}$ does not racemize at room temperature. ${ }^{2 b}$ However, the absolute stereochemistry of the unique chiral olefins $\mathbf{1}$ and $\mathbf{2}$ has not been established in an experimental way. In this paper, we report the synthesis, circular dichroism spectra, and X-ray crystallographic structure determination of chiral dimethyl olefins, $\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-$ (-)-1, $1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-octahydro-3, 3^{\prime}-dimethyl-4, 4^{\prime}-biphenanthrylidene (3) and its $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)$-isomer (4) (Chart 1). We also report experimental determination of the absolute configurations of chiral olefins $\mathbf{1}$ and 2 by comparing their CD spectra with those of chiral dimethyl olefins, $\left(3 R, 3^{\prime} R\right)-(P, P)-$ $(E)-(-)-\mathbf{3}$ and $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-\mathbf{4}$, respectively.

To obtain optically pure both enantiomers in a laboratory scale and to determine their absolute configurations by X-ray crystallographic analysis, the diastereomer method using a chiral auxiliary is the most useful and powerful. For example, we reported that camphorsultam was powerful as a chiral auxiliary for enantioresolution of various carboxylic acids as diastereomers by HPLC. ${ }^{3,4}$ The chiral auxiliary of camphorsultam was

[^0]
Chart 1

$[\mathrm{CD}(+) 239.0]-(M, M)-$ (E) -1

[CD(-)237.2]-(3R,3'R)$(P, P)-(E)-3$

$[\mathrm{CD}(+) 238.1]-(M, M)-$
(Z)-2

[CD(-)238.0]-(3R,3'R)$(P, P)-(Z)-4$
also useful as an internal reference of absolute configuration for determining the absolute configuration of carboxylic acids by X-ray crystallographic structure analysis. As an extension of this method, we have developed new chiral phthalic and dichlorophthalic acids as chiral auxiliaries useful for enantioresolution of various alcohols as diastereomeric esters by HPLC,

[^1]
Chart 2

5

7

6

8
and these chiral acids are also useful as internal references of absolute configuration. ${ }^{5,6}$ This chiral auxiliary method was applied to the preparation and determination of the absolute stereochemisty of enantiopure cis-methyl alcohol 11, starting from which unique chiral dimethyl olefins 3 and 4 were synthesized, as discussed below.

Results and Discussion

Strategy for Determination of the Absolute Stereochemistry of Chiral Olefins: Introduction of Internal Reference of Absolute Configuration and Control of the Molecular Helicity of Chiral Olefins by Additional Centers of Chirality. To determine the absolute configurations of these chiral olefins by the Bijvoet method ${ }^{7,8}$ of X-ray analysis, we tried to synthesize heavy atom derivatives 5 and 6 (Chart 2), but all attempts were unsuccessful. Instead of the Bijvoet method, one can determine absolute configurations of chiral compounds by X-ray crystallography, if the sample compound contains internal reference of absolute configuration. In this case, chiral auxiliaries are usually used as internal references of absolute configuration. ${ }^{3-6}$ In our case, however, we adopted the strategy to employ methyl groups as chiral centers, as shown in formulas $\mathbf{7}$ and $\mathbf{8}$ of Chart 2 , for the following reasons: (i) the methyl group is the minimum substituent and brings little affect to the π-electronic structure of chiral olefins, and therefore we can directly compare the CD spectra of chiral dimethyl olefins $\mathbf{7}$ and $\mathbf{8}$ with those of unsubstituted chiral olefins $\mathbf{1}$ and $\mathbf{2}$; (ii) the molecular helicity of chiral olefins may be controlled by the chirality at the methyl group; (iii) if methyl groups are introduced at the 3 and 3^{\prime} positions, it may inhibit the racemization of cis-olefin because of steric hindrance, and therefore we can expect to synthesize the stable and optically pure chiral cis-olefin. From these reasons, among possible $1,1^{\prime}$-, 2, 2^{\prime}-, and $3,3^{\prime}$-dimethyl olefins (Chart 2), we have chosen to synthesize (E)-1, $1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$ -octahydro-3, 3^{\prime}-dimethyl-4, 4^{\prime}-biphenanthrylidene (3) and its (Z)isomer 4 (Chart 1). If chiral olefins 3 and 4 are synthesized by dimerization of optically active methyl ketone 10, chiral dimethyl olefins $\mathbf{3}$ and $\mathbf{4}$ should have C_{2}-symmetrical structures.

We have expected that the molecular helicity of chiral olefins 3 and 4 would be controlled by the chirality at the 3 and 3^{\prime}

[^2]
$\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-3$ with two axial methyl groups C_{2}-symmetry $\Delta \mathrm{E}=0.0 \mathrm{kcal} / \mathrm{mol}$

(3R,3'R)-(M,M)-(E)-3 with two equatorial methyl groups C_{2}-symmetry $\Delta \mathrm{E}=+10.2 \mathrm{kcal} / \mathrm{mol}$

Figure 1. Molecular conformations of $\left(3 R, 3^{\prime} R\right)-(E)$-dimethyl olefin 3 calculated by the MOPAC 93 AM1 programs.

($3 R, 3^{\prime} R$)-(\mathbf{P}, P) $-(\mathrm{Z})-4$ with two axial methyl groups
C_{2}-symmetry

($3 R, \mathbf{3}^{\prime} R$)-(M, M)-(Z)-4
$\Delta \mathrm{E}=+11.1 \mathrm{kcal} / \mathrm{mol}$

Figure 2. Molecular conformations of $\left(3 R, 3^{\prime} R\right)-(Z)$-dimethyl olefin 4 calculated by the MOPAC 93 AM1 programs.
positions. To check this possibility, we carried out the calculation of conformational energy of 3 and 4 by the MOPAC 93 AM1 programs. ${ }^{9}$ As shown in Figure 1, there are two conformers of trans-dimethyl olefin 3; the most stable conformer has two methyl groups in axial positions to prevent steric hindrance. The other conformer having two methyl groups in equatorial positions is less stable. Since the energy difference ΔE is $+10.2 \mathrm{kcal} / \mathrm{mol}$, the population of the less-stable conformer is negligible. From the results, it is now sure that the molecular helicity of chiral olefin is controlled by the chirality of methyl groups at the 3 and 3^{\prime} positions; if the chiralities at 3 and 3^{\prime} positions are $\left(3 R, 3^{\prime} R\right)$, the molecular helicity should be (P, P). If $\left(3 S, 3^{\prime} S\right)$, the helicity is (M, M).

The same is true for cis-dimethyl olefin 4 (Figure 2). The most stable conformer of 4 takes a $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)$ - or $\left(3 S, 3^{\prime} S\right)-(M, M)-(Z)$-conformation, where two methyl groups are in axial positions. In the less-stable conformer 4 with $\left(3 R, 3^{\prime} R\right)$ $(M, M)-(Z)$ - or $\left(3 S, 3^{\prime} S\right)-(P, P)-(Z)$-configuration, two methyl groups cannot take equatorial positions at the same time because of severe steric hindrance between two methyl groups, and therefore the conformation deviates from the C_{2}-symmetrical structure. The less-stable conformer is negligible because of

[^3]Table 1. X-ray Crystallographic Data of Olefin $(\pm)-\mathbf{3}$, Ester $(-)-\mathbf{1 6 b}$, Chiral Olefin $(-)-\mathbf{3}$, and Olefin $(\pm)-\mathbf{4}$

compound	(\pm)-3	(-)-16b	$(-)-3$	(土)-4
formula	$\mathrm{C}_{30} \mathrm{H}_{28}$	$\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}$	$\mathrm{C}_{30} \mathrm{H}_{28}$	$\mathrm{C}_{30} \mathrm{H}_{28}$
fw (amu)	388.55	626.60	388.55	388.55
$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$, solvent	236, hexane	203, EtOAc	240, MeOH	169-170, hexane
cryst. dimens. (mm)	$0.32 \times 0.23 \times 0.19$	$0.43 \times 0.30 \times 0.26$	$0.40 \times 0.17 \times 0.15$	$0.46 \times 0.37 \times 0.35$
cryst. syst.	monoclinic	orthorhombic	orthorhombic	monoclinic
space group	$C 2 / c$ (No. 15)	$P 22_{1} 2_{1}$ (No. 19)	$P 22_{1} 2_{1}$ (No. 19)	$P 2{ }_{1} / a($ No. 14)
$a(\AA)$	21.563(5)	15.607(2)	10.124(2)	17.815(3)
$b(\AA)$	27.154(6)	15.923(3)	24.330(4)	12.198(2)
$c(\AA)$	7.764(2)	12.249(2)	8.796(1)	10.647(2)
β (deg)	110.56 (2)			106.09(1)
$V\left(\AA^{3}\right)$	4257(2)	3044.0(9)	2166.6(6)	2223.0(6)
Z	8	4	4	4
$D_{\mathrm{x}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.213	1.367	1.191	1.161
$D_{\mathrm{m}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)^{a}$	1.207	1.363	1.194	1.162
$\mu\left(\mathrm{cm}^{-1}\right)$	4.39	27.79	4.31	4.20
no. of independent reflns				
$F_{\mathrm{o}}>3.0 \sigma\left(F_{\mathrm{o}}\right)$	4040	2923	2127	3783
absorption corr.	no	statistical ${ }^{\text {b }}$	statistical $^{\text {b }}$	statistical ${ }^{\text {b }}$
absolute config.		3S,4S	$3 R, 3^{\prime} R, P, P$	
final R and (R_{w})	0.0615 (0.0595)	0.0287 (0.0400)	0.0343 (0.0432)	0.0749 (0.0782)
final R and (R_{w}) for the mirror image		0.0448 (0.0644)		

${ }^{a}$ By flotation using a $\mathrm{CCl}_{4} /$ hexane solution. ${ }^{b}$ Katayama, C.; Sakabe, N.; Sakabe, K. Acta Crystallogr. 1972, A28, 293.
Scheme 1^{a}

${ }^{a}$ Key: (a) LDA, $\mathrm{CH}_{3} \mathrm{I} / \mathrm{THF}$; (b) $\mathrm{TiCl}_{3}, \mathrm{LiAlH}_{4} / \mathrm{THF}$, reflux 20 h.
much difference of conformational energy of $\Delta E=+11.1 \mathrm{kcal} /$ mol. The molecular helicity of cis-olefin $\mathbf{4}$ is thus controlled by the chirality at the 3 and 3^{\prime} positions.

Synthesis of $\left(\mathbf{3} R^{*}, \mathbf{3}^{\prime} \boldsymbol{R}^{*}\right)-\left(P^{*}, P^{*}\right)-(E)-(\pm)$-Dimethyl Olefin 3 and Its X-ray Crystallographic Analysis. To confirm the above prediction of the molecular conformation of chiral olefins, we next synthesized trans-dimethyl olefin $\mathbf{3}$ as a racemate (Scheme 1). Ketone 9 was methylated with LDA and $\mathrm{CH}_{3} \mathrm{I}$ in THF giving methyl ketone $\mathbf{1 0}$ in a good yield. The obtained methyl ketone $\mathbf{1 0}$ was subjected to the McMurry reaction affording trans-dimethyl olefin $\mathbf{3}$ in 8% yield. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra indicate that olefin $\mathbf{3}$ has a C_{2}-symmetrical structure (see the Experimental Section), and its (E) geometry was supported by the chemical shift of aromatic protons around $\delta 7.31-8.44$ ppm, because cis-olefin shows an upfield shift due to aromatic ring current anisotropy. ${ }^{2 a}$ The (E) geometry of $\mathbf{3}$ was confirmed by NOE data observed between Me3 and H5' and between H3 and H5' (see the Supporting Information).

To determine the configuration at the 3 and 3^{\prime} positions, ${ }^{1} \mathrm{H}$ NMR spectra were studied in detail. However, a clearcut information to determine the configuration was not obtained. Racemate $\mathbf{3}$ crystallized as colorless prisms suitable for X-ray analysis, and those crystals are scarcely soluble in common solvents. A single crystal was selected and subjected to X-ray crystallographic diffraction (Table 1). The crystal was found to be monoclinic: space group $C 2 / \mathrm{c}$ (No. 15). The skeletal structure was solved by the direct methods and successive Fourier syntheses. All hydrogen atoms were found by the difference Fourier syntheses. Full-matrix least-squares refinement of positional and thermal parameters led to the final convergence with $R=0.0615$ and $R_{\mathrm{w}}=0.0595$. The

Figure 3. ORTEP drawing of racemic $\left(3 R^{*}, 3^{\prime} R^{*}\right)-\left(P^{*}, P^{*}\right)-(E)-(\pm)-$ dimethyl olefin 3. The figure does not express its absolute stereochemistry. The atoms are drawn at 50% probability.
$\left(3 R^{*}, 3^{\prime} R^{*}\right)-\left(P^{*}, P^{*}\right)-(E)$-configuration of $(\pm)-\mathbf{3}$ was determined as shown in Figure 3. Two methyl groups are in axial positions, as predicted by the MOPAC calculation.

The geometry of compound (\pm) $\mathbf{3}$ in the solid state is characterized as follows: central double bond, $\mathrm{C} 4-\mathrm{C} 4^{\prime}=1.345$ \AA; average value of the dihedral angle between naphthalene plane and central double bond, $\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime} \mathrm{a}-\mathrm{C} 4^{\prime} \mathrm{b}=-61.8^{\circ}$; dihedral angles, $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime} \mathrm{a}=-7.9^{\circ}$ (average), $\mathrm{C} 3-$ $\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}=+158.9^{\circ}, \mathrm{C} 4 \mathrm{a}-\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime} \mathrm{a}=-174.2^{\circ}$. The central double bond is thus a little twisted, and the component sp^{2} carbon atoms are deviated from a plane structure. These geometrical parameters are almost in agreement with those of trans-olefin $(\pm)-1 .{ }^{2 \mathrm{a}}$ The proton-proton distance correlating to the ${ }^{1} \mathrm{H}$ NMR NOESY phenomena was calculated from the X-ray data: $\mathrm{Me} 3 \mathrm{ax}-\mathrm{H}^{\prime}(\mathrm{ax}=\mathrm{axial})=3.07 \AA$, $\mathrm{H} 3 \mathrm{eq}-\mathrm{H} 5^{\prime}$ $(\mathrm{eq}=$ equatorial $)=2.91 \AA$. The $\mathrm{X}-$ ray analysis thus confirmed the relationship between proton-proton distance and NOESY data.

Enantioresolution of 1,2,3,4-Tetrahydro-3-methyl-4-phenanthrenol (\pm)-11 as the Chiral Phthalic Acid Ester. To synthesize optically pure (E) $-1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-octahydro- $3,3^{\prime}$ -dimethyl-4, 4^{\prime}-biphenanthrylidene (3), optically pure methyl ketone $\mathbf{1 0}$ was needed. To prepare optically pure $\mathbf{1 0}$, we adopted the strategy to make enantioresolution of cis-1,2,3,4-tetrahydro-3-methyl-4-phenanthrenol $((\pm)-\mathbf{1 1})$ or its trans-isomer (\pm)-12 with chiral acid ($1 S, 2 R, 4 R$)-(-)-13 (Scheme 2). ${ }^{5 b}$ Methyl ketone $(\pm)-\mathbf{1 0}$ was reduced with NaBH_{4} to yield cis-alcohol $\mathbf{1 1}$ as a major product and trans-alcohol $\mathbf{1 2}$ as a minor one. The relative

Scheme $\mathbf{2}^{a}$

$(3 R, 4 R)-(+)-15 \mathrm{a}: \mathrm{R}=\mathrm{H}$
$(3 R, 4 R)-(+)-16 \mathrm{a}: \mathbf{R}=\mathbf{C l}$
$(3 S, 4 S)-(-)-15 b: \mathbf{R}=\mathbf{H}$
$(3 S, 4 S)-(-)-16 b: \mathbf{R}=\mathrm{Cl}, \mathrm{X}-\mathrm{ray}$
${ }^{a}$ Key: (a) $\mathrm{NaBH} 4 / \mathrm{MeOH}$; (b) DCC , $\mathrm{DMAP} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.
stereochemistry of these alcohols was determined on the basis of ${ }^{1} \mathrm{H}$ NMR coupling constant data; in both alcohols 11 and 12, the hydroxyl group at the 4 position takes a quasi-axial conformation. The 3 proton of alcohol $\mathbf{1 1}$ was found to be in axial position because of large coupling constant of 12.9 Hz between 3- and 2 -axial protons. Therefore, a 3-methyl group is in an equatorial position, indicating the cis-configuration. For alcohol 12, the coupling constant between 3- and 2-axial protons is 3.3 Hz , leading to the trans-configuration. These assignments were finally established by the X-ray crystallographic analysis as discussed below.

Racemic cis-alcohol (\pm)- $\mathbf{1 1}$ was esterified with chiral acid $(1 S, 2 R, 4 R)-(-)-\mathbf{1 3}$ to make enantioresolution (Scheme 2); a mixture of racemic cis-alcohol $(\pm)-11$, chiral acid (-)-13, dicyclohexylcarbodiimide (DCC), and 4-(dimethylamino)pyridine (DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed for 9 h , yielding a diastereomeric mixture of esters $(+) \mathbf{- 1 5 a}$ and $(-) \mathbf{- 1 5 b}$. The mixture was easily separated by HPLC on silica gel (hexane/ EtOAc 7:1): separation factor $\alpha=1.10$; resolution factor R_{s} $=1.29$. The first eluted ester $(+)-\mathbf{1 5 a}$ and the second one $(-)$ 15b were obtained. ${ }^{5 b}$

To obtain crystals suitable for X-ray crystallographic analysis, we have attempted recrystallization of both esters $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ from various solvents. However, ester 15a crystallized as fine needles from methanol, while ester 15b was obtained as an amorphous solid. Therefore, the X-ray crystallographic analysis of esters $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ was unsuccessful.

Ester $(+)-\mathbf{1 5 a}$ was reduced with LiAlH_{4} to yield optically pure cis-alcohol (+)-11 as fine needles (Scheme 3). Ester (-)15b similarly gave optically pure cis-alcohol (-)-11 as silky fine needles. Enantioresolution of cis-alcohol 11 was thus accomplished by the chiral phthalic acid amide method developed by us. ${ }^{5 b}$

Enantioresolution of cis-Alcohol (\pm)-11 as the Chiral Dichlorophthalic Acid Ester. We have recently developed another chiral auxiliary, chiral dichlorophthalic acid amide $(1 S, 2 R, 4 R)-(-) \mathbf{- 1 4}$, useful for enantioresolution and X-ray crystallographic analysis. Racemic cis-alcohol (\pm)- $\mathbf{1 1}$ was similarly esterified with chiral acid $(1 S, 2 R, 4 R)-(-)-\mathbf{1 4}$ to achieve enantioresolution (Scheme 2); a mixture of racemic cis-alcohol $(\pm)-\mathbf{1 1}$, chiral acid (-)-14, DCC, and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed for 9 h , yielding a diastereomeric mixture of esters $(+)-\mathbf{1 6 a}$ and $(-) \mathbf{- 1 6 b}$. We found that the diastereomeric mixture was more easily separable by HPLC on silica gel (hexane/EtOAc 7:1) than the esters 15a and 15b: separation factor $\alpha=1.18$;

Scheme 3^{a}

$$
\begin{aligned}
& (3 R, 4 R)-(+)-15 \mathrm{a}: \mathbf{R}=\mathbf{H} \\
& (3 R, 4 R)-(+)-16 \mathrm{a}: \mathbf{R}=\mathbf{C l}
\end{aligned}
$$

[CD(-)238.0]-(3R,3'R)$(P, P)-(E)-(-)-3$
${ }^{a}$ Key: (a) $\mathrm{LiAlH}_{4} / \mathrm{THF} ;$ (b) PCC, MS-4A/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{TiCl}_{3}, \mathrm{LiAlH}_{4} /$ THF, reflux 20 h .
resolution factor $R_{\mathrm{S}}=1.31$. The elution times of both esters 16a and 16b were almost half those of esters 15a and 15b. The first eluted ester $(+)-\mathbf{1 6 a}(47 \%)$ and the second one $(-) \mathbf{- 1 6 b}$ (48%) were obtained.

The great merit to use chiral dichlorophthalic acid (-)-14 is the point that the second-eluted ester $\mathbf{1 6 b}$ crystallized as large prisms suitable for X-ray diffraction. When recrystallized from EtOAc, ester 16b gave large colorless prisms, while ester 16a crystallized as fine silky needles from methanol.

Ester (+)-16a was reduced with LiAlH_{4} to yield optically pure $c i s$-alcohol (+)-11, whose spectral data agreed with those of authentic sample obtained from ester 15a (Scheme 3). Reduction of ester (-)-16b similarly gave optically pure cisalcohol (-)-11 which was identical with (- -cis-alcohol obtained from ester 15b.

X-ray Crystallographic Analysis of (3S,4S)-(-)-1,2,3,4-Tetrahydro-3-methyl-4-phenanthrenol Chiral Dichlorophthalic Acid Ester (16b). ${ }^{5 \mathrm{bb}}$ A single crystal of (-)-16b was subjected to X-ray analysis (Table 1). The crystal was found to be orthorhombic: space group $P 2_{1} 2_{1} 2_{1}$ (No. 19). The skeletal structure was solved by direct methods and successive Fourier syntheses, and all hydrogen atoms were found by the difference Fourier syntheses. Absorption correction and full-matrix leastsquares refinement of positional and thermal parameters, including anomalous scattering factors of chlorine, sulfur, oxygen, nitrogen, and carbon atoms, led to the final convergence with $R=0.0287$ and $R_{\mathrm{w}}=0.0400$, while $R=0.0448$ and $R_{\mathrm{w}}=$ 0.0644 were for the mirror image structure. The absolute stereochemistry of the second-eluted ester ($-\mathbf{) - 1 6 b}$ was thus determined to be $(3 S, 4 S)$ by the heavy atom effect as shown in Figure 4. The ($3 S, 4 S$)-configuration of (-)-16b was also determined independently by the internal reference method using the known absolute configuration of the camphor part of auxiliary 14. The cis-configuration of alcohol 11 was corroborated by this X-ray analysis.

Since reduction of ester ($3 S, 4 S$)-(-)-16b gives (-)-cis-alcohol 11, the absolute configuration of (-)-cis-alcohol 11 was determined to be $(3 S, 4 S)$. According to this determination, the absolute configurations of remaining compounds were unambiguously determined as follows: $(3 R, 4 R)-(+)$-cis-alcohol 11, $(3 R, 4 R)$ - $(+)$-ester 15a, $(3 R, 4 R)$-(+)-ester 16a, and $(3 S, 4 S)$ -$(-)$-ester 15b (Schemes 2 and 3).

Figure 4. ORTEP drawing of $(3 S, 4 S)-(-)$-cis-alcohol chiral dichlorophthalic acid ester $\mathbf{1 6 b}$. The atoms are drawn at 50% probability.

Synthesis of Optically Pure 1,2,3,4-Tetrahydro-3-methyl-4-phenanthrenone ($(3 R)-(-)-10)$ and Check of Enantiomeric Purity. To prepare optically pure methyl ketone 10, optically pure cis-alcohol $(3 R, 4 R)-(+)-\mathbf{1 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was oxidized with pyridinium chlorochromate (PCC) in the presence of molecular sieves (MS-4A) (Scheme 3). The desired methyl ketone $\mathbf{1 0}$ was obtained in a good yield. However, the specific rotation value of the obtained product $\mathbf{1 0}$ was remarkably small: $[\alpha]^{20}{ }_{D}-2.9^{\circ}$ (c $1.27, \mathrm{CHCl}_{3}$). It may imply that partial racemization occurred during the oxidation reaction, which we had worried about when choosing α-methyl ketone $\mathbf{1 0}$ as a chiral starting material. We have checked the enantiomeric purity of $(-) \mathbf{- 1 0}$ as follows.

Ketone (-)-10 was reduced with NaBH_{4} giving cis- and trans-alcohols, and the fraction of cis-alcohol separated by HPLC was next esterified with chiral acid ($1 S, 2 R, 4 R$)-(-)-13 as for racemate $(\pm)-\mathbf{1 1}$ (Scheme 2). The ester product was subjected to HPLC on silica gel under the same condition used for separation of two esters $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$. The HPLC showed only one peak of ester, the retention time of which was the same as that of ester $(3 R, 4 R)-(+)-\mathbf{1 5 a}$. The ${ }^{1} \mathrm{H}$ NMR of the ester product isolated was identical with that of $(3 R, 4 R)-(+)-$ 15a. These results clearly indicate that methyl ketone (3R)-(-)-10 with $[\alpha]^{20}{ }_{\mathrm{D}}-2.9^{\circ}$ is enantiomerically pure.

Synthesis of $\left(\mathbf{3 R}, \mathbf{3}^{\prime} R\right)-(P, P)-(E)-(-)$-Dimethyl Olefin 3 and Its X-ray Crystallographic Analysis. Optically pure methyl ketone $(3 R)-(-)-\mathbf{1 0}$ was subjected to the McMurry reaction, affording trans-dimethyl olefin (-)-3 in 5\% yield (Scheme 3): $[\alpha]^{20}{ }_{\mathrm{D}}-446.2^{\circ}\left(c 0.22, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(-)-\mathbf{3}$ were identical with those of racemate $(\pm)-3$. The large negative optical rotation value of (E)-dimethyl olefin (-)- $\mathbf{3}$ indicates that no racemization occurred during the McMurry reaction. At the final stage of HPLC purification of $(-)-\mathbf{3}$ under the reverse phase condition using ODS as a stationary phase and methanol as solvent, respectively, we were lucky to obtain good results as follows: after the HPLC purification, eluents of methanol solution were allowed to stand at room temperature overnight, and in the next morning, we found the appearance of beautiful prismatic crystals of olefin (-)-3 suitable for X-ray crystallographic analysis.

A single crystal was selected and subjected to X-ray crystallographic diffraction (Table 1). The crystal was found to be orthorhombic: space group $P 2_{1} 2_{1} 2_{1}$ (No. 19). The structure was solved by the direct methods and successive Fourier syntheses, and all hydrogen atoms were found by the difference Fourier syntheses. Full-matrix least-squares refinement of positional and thermal parameters led to the final convergence with $R=0.0343$ and $R_{\mathrm{w}}=0.0432$. The absolute configuration of optically active trans-olefin (-)-3 was determined to be $\left(3 R, 3^{\prime} R\right)-(P, P)$ by the internal reference method using the known absolute configuration of methyl groups at the 3 and 3^{\prime} positions, as illustrated in Figure 5.

Figure 5. ORTEP drawing of $[\mathrm{CD}(-) 237.2]-\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-(-)-$ dimethyl olefin 3. The atoms are drawn at 50% probability.

Table 2. Observed UV and CD Spectra of Chiral Olefins

compound	obsd (MeOH or hexane)	
	UV, $\lambda_{\text {max }} \mathrm{nm}(\epsilon)$	$\mathrm{CD}, \lambda_{\text {ext }} \mathrm{nm}(\Delta \epsilon)$
$(M, M)-(E)-\mathbf{1}^{a}$	329.8 (17 400)	331.8 (+26.0)
	318.8 (17 300)	
		253.4 (-20.9)
	232.2 (61 800)	239.0 (+58.2)
		224.8 (-76.4)
	216.2 (82 800)	$214.2(-153.3)$
$\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-\mathbf{3}^{a}$	326.6 (15 300)	
	313.0 (16 600)	313.6 (-18.7)
		$254.8(+33.3)$
		$237.2(-92.5)$
	218.4 (85700)	$217.8(+148.5)$
$(M, M)-(Z)-\mathbf{2}^{b}$	301.9 (11 300)	338.0 (-14.0)
		282.5 (+11.9)
		256.8 (-80.1)
		239.6 (+222.2)
	222.8 (71 900)	224.0 (-281.3)
$\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-\mathbf{4}^{c}$	301.8 (11 800)	$300.4(+13.4)$
		$279.4(-10.1)$
		$254.0(+86.4)$
		238.0 (-226.9)
	222.4 (76 500)	$223.4(+334.0)$

${ }^{a}$ Observed in MeOH. ${ }^{b}$ Observed in hexane at $-50{ }^{\circ} \mathrm{C} .{ }^{c}$ Observed in hexane.

The molecular geometry of compound (-)-3 is almost the same as that of racemate $(\pm)-\mathbf{3}$. Two methyl groups at the 3 and 3^{\prime} positions are in the axial positions, and the molecular helicity is controlled by the chiralities at the 3 and 3^{\prime} positions. It is now established that trans-dimethyl olefin (-)-3 has the $\left(3 R, 3^{\prime} R\right)-(P, P)$ absolute stereochemistry.

CD and UV Spectra of $\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-(-)$-Dimethyl Olefin 3 and Their Comparison with Those of [CD(+)239.0]((%5Cboldsymbol%7BE%7D))-Olefin 1. The UV spectrum of trans-dimethyl olefin (E) (-)- $\mathbf{3}$ shows intense absorption bands similar to those of transolefin $(E) \mathbf{- 1}: \quad \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 326.6 \mathrm{~nm}(\epsilon 15300), 313.0$ (16 600), 218.4 (85 700) (Table 2 and Figure 6). The shape of UV curve of $(E)-(-)-\mathbf{3}$ closely resembles that of $(E)-\mathbf{1}$ including the small trough around 325 nm and the shoulder around 230 nm.

The CD spectrum of trans-dimethyl olefin $(E)-(-)-\mathbf{3}$ exhibits very intense Cotton effects in ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ and ${ }^{1} \mathrm{~B}_{\mathrm{b}}$ transition region of naphthalene chromophore: $\mathrm{CD}(\mathrm{MeOH}) \lambda_{\text {ext }} 313.6 \mathrm{~nm}(\Delta \epsilon$ -18.7), 254.8 (+33.3), 237.2 (-92.5), 217.8 (+148.5) (Table 2 and Figure 6). The CD intensities of these Cotton effects never decrease at room temperature, and therefore, it is concluded that trans-dimethyl olefin $(E)-(-)$ - $\mathbf{3}$ never racemizes or changes to the other diastereomer $\left(\left(3 R, 3^{\prime} R\right)-(M, M)-\mathbf{3}\right)$. We have expected such stability of $\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-(-)-\mathbf{3}$, because dimethyl olefin $(E)-(-)-3$ is sterically more hindered than unsubstituted trans-olefin $(E)-\mathbf{1}$ which does not racemize at room temperature.

Figure 6. CD and UV spectra of $\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-(-)$-dimethyl olefin 3 in methanol.

The CD curve of $\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-(-)-\mathbf{3}$ is very similar in shape to that of unsubstituted trans-olefin [CD(+)239.0]-(E)$\mathbf{1},{ }^{10}$ except for the position of shoulder around 225 nm (compare Figure 6 with Figure 3 of the first paper of this series). ${ }^{2 a}$ The similarity of CD and UV spectra of trans-dimethyl olefin (-)-3 to those of (E) - $\mathbf{1}$ indicates that two methyl groups at the 3 and 3^{\prime} positions little affect the twisted π-electron structure of these chiral olefins. Since the CD Cotton effects of $\left(3 R, 3^{\prime} R\right)-(P, P)-$ $(E)-(-)-\mathbf{3}$ are opposite in sign to those of $[\mathrm{CD}(+) 239.0]-(E)-\mathbf{1}$, the absolute stereochemistry of $[\mathrm{CD}(+) 239.0]-(E)-\mathbf{1}$ is now determined to be (M, M). We have thus succeeded in determining the absolute stereochemistry of these chiral olefins in experimental manner. These results of stereochemical assignment are consistent with the absolute stereochemistry of [CD$(+) 239.0]-(E)-1$ theoretically determined. ${ }^{2 \mathrm{a}}$

Photochemical Conversion of trans-Dimethyl Olefin $\left(3 R^{*}, \mathbf{3}^{\prime} \boldsymbol{R}^{*}\right)-\left(P^{*}, P^{*}\right)-(E)-(\pm)$ - $\mathbf{3}$ to cis-Dimethyl Olefin $\left(3 R^{*}, 3^{\prime} \boldsymbol{R}^{*}\right)$ $\left(P^{*}, P^{*}\right)-(Z)-(\pm)-4$ and X-ray Crystallographic Analysis of the Product. To obtain cis-dimethyl olefin $\mathbf{4}$, we checked the crude product of the McMurry reaction of methyl ketone $\mathbf{1 0}$. However, we were unsuccessful in isolating the cis-dimethyl olefin 4 in both cases using racemic and optically pure methyl ketone 10. This may imply the severe steric hindrance in the dimerization reaction.

Instead, we adopted the strategy of photochemical conversion of trans-dimethyl olefin 3 to cis-dimethyl olefin 4 (Scheme 4). A solution of racemate $(\pm)-3$ in acetone- d_{6} was irradiated by a high-pressure mercury lamp using a Pyrex glass filter for 5 h , during which time the photoreaction was monitored by ${ }^{1} \mathrm{H}$ NMR. cis-Dimethyl olefin (\pm)-4 was obtained as crystals in 43% yield,

[^4]Scheme 4^{a}

$[\mathrm{CD}(-) 237.2]-\left(3 R, 3^{\prime} R\right)-$
$[\mathrm{CD}(-) 238.0]-(3 R, 3 ' R)-$
$(P, P)-(Z)-4$ $(\boldsymbol{P}, \boldsymbol{P})-(E)-(-)-3$
${ }^{a}$ Key: (a) h v, Hg lamp, Pyrex/acetone.

Figure 7. ORTEP drawing of racemic $\left(3 R^{*}, 3^{\prime} R^{*}\right)-\left(P^{*}, P^{*}\right)-(Z)-(\pm)-$ dimethyl olefin 4. The figure does not express its absolute stereochemistry. The atoms are drawn at 50% probability.
which were recrystallized from hexane giving colorless prisms: mp $169-170{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra indicated the C_{2}-symmetric structure of cis-dimethyl olefin 4 , the (Z) geometry of which was corroborated by the chemical shift data of aromatic protons appearing at $6.6-7.2 \mathrm{ppm}$ as for $(Z)-\mathbf{2}$ and also by the NOE between $1-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$ (see the Experimental Section and the Supporting Information). The configuration of two methyl groups at the 3 and 3^{\prime} positions was estimated to be axial, because of steric hindrance as discussed above (Figure 2). These stereochemical remarks were confirmed by the X-ray crystallographic analysis of racemate $(\pm)-\mathbf{4}$ as follows.

Single crystals suitable for X-ray analysis were obtained as colorless prisms by recrystallization from hexane (Table 1). The crystal was found to be monoclinic: space group $P 2_{1} /$ a (No. 14). The skeletal structure was solved by the direct methods and successive Fourier syntheses, and all hydrogen atoms were found by the difference Fourier syntheses. Absorption correction and full-matrix least-squares refinement of positional and thermal parameters led to the final convergence with $R=0.0749$ and $R_{\mathrm{w}}=0.0782$. The relative stereochemistry of cis-dimethyl olefin (\pm)-4 was determined to be ($3 R^{*}, 3^{\prime} R^{*}$) $-\left(P^{*}, P^{*}\right)$, as shown in Figure 7. Two methyl groups are in axial positions as discussed above. The molecular helicity of cis-dimethyl olefin 4 is thus controlled by the chiralities at the 3 and 3^{\prime} positions.

The molecular geometry of cis-dimethyl olefin (\pm)-4 is characterized as follows: central double bond, $\mathrm{C} 4-\mathrm{C} 4^{\prime}=1.347$ \AA; dihedral angle between naphthalene plane and central double bond, $\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime} \mathrm{a}-\mathrm{C} 4^{\prime} \mathrm{b}=+54.4^{\circ}$ (average); dihedral angles, $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime} \mathrm{a}=-178.7^{\circ}$ (average), $\mathrm{C} 3-\mathrm{C} 4-$ $\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}=+5.9^{\circ}, \mathrm{C} 4 \mathrm{a}-\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime} \mathrm{a}=-3.2^{\circ}$. The bond length of the central double bond is thus similar to that of transdimethyl olefin 3 ($1.345 \AA$), and therefore, the bond length of the central double bond is little affected by the (Z) - and (E) geometrical isomerism. As seen from the dihedral angle data, the central double bond is a little twisted and the component sp^{2} carbon atoms are a little deviated from a planar structure.

The distance between two overlapped naphthalene planes is

Figure 8. CD and UV spectra of $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)$-dimethyl olefin 4 in hexane.
represented by the interatomic distance ($3.253 \AA$) between C4b and $C 4^{\prime} \mathrm{b}$. Two naphthalene groups in cis-dimethyl olefin 4 are thus in contact with each other within twice of the van der Waals' radius ($1.70 \AA$) of aromatic planes. The $\mathrm{H} 1-\mathrm{H}^{\prime}{ }^{\prime}$ distance correlating to the observed ${ }^{1} \mathrm{H}$ NMR NOE was calculated from the X-ray data: $\mathrm{H} 1 \mathrm{ax}-\mathrm{H} 5^{\prime}=2.32 \AA$. The X-ray analysis thus confirmed the relationship between protonproton distance and NOESY data.

Synthesis of cis-Dimethyl Olefin [CD(-)238.0]-(3R, $\mathbf{3}^{\prime} R$)$(P, P)-(Z)-4$, Its CD and UV Spectra, and Determination of the Absolute Stereochemistry of cis-Olefins. A solution of optically pure trans-dimethyl olefin [CD(-)237.2]-($3 R, 3^{\prime} R$)$(P, P)-(E)-(-)-\mathbf{3}$ was subjected to the photochemical reaction as for racemate $(\pm)-3$, giving the desired optically active cisdimethyl olefin 4 in 55% yield (Scheme 4). Since the CD spectrum of the optically active cis-dimethyl olefin $\mathbf{4}$ obtained exhibited a negative Cotton effect at 238.0 nm , the cis-olefin product is designated as [CD(-)238.0]-(Z)-4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of [CD(-)238.0]-(Z)-4 are identical with those of racemate $(\pm)-\mathbf{4}$, the relative stereochemistry of which was determined to be $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)$ or $\left(3 S, 3^{\prime} S\right)-(M, M)-(Z)$ by X-ray analysis discussed above. Since the absolute configuration of methyl groups is retained during the photochemical (E) and (Z) interconversion, it is evident that cis-dimethyl olefin $[\mathrm{CD}(-) 238.0]-(Z)-4$ has the $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)$ absolute stereochemistry.

The CD spectrum of $[C D(-) 238.0]-\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-4$ shows very intense Cotton effects in ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ and ${ }^{1} \mathrm{~B}_{\mathrm{b}}$ transition region of naphthalene chromophore: CD (hexane) $\lambda_{\text {ext }} 300.4 \mathrm{~nm}$ ($\Delta \epsilon$ $+13.4)$, 279.4 (-10.1), 254.0 (+86.4), 238.0 (-226.9), 223.4 $(+334.0)$ (Table 2 and Figure 8). The CD amplitude $A\left(=\Delta \epsilon_{\text {peak }}\right.$ $-\Delta \epsilon_{\text {rrough }}$) in the ${ }^{1} \mathrm{~B}_{\mathrm{b}}$ transition region is -560.9 , which is comparable to that of unsubstituted cis-olefin [CD(+)239.6]$(M, M)-(Z)-2(A=+503.5)$. The CD intensities of these Cotton
effects do not change at room temperature, and therefore, it is obvious that cis-dimethyl olefin $\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-4$ does not change or racemize at room temperature, in contrast to the unsubstituted cis-olefin 2 which undergoes easy racemization at room temperature. This is what we expected to occur in our strategy. This stability of cis-dimethyl olefin [CD(-)238.0]$\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-4$, of course, is due to the steric hindrance between two methyl groups at the 3 and 3^{\prime} positions, which blocks racemization and/or conversion to other diastereomers.

The CD curve of $[\mathrm{CD}(-) 238.0]-\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-4$ is very similar in shape to that of unsubstituted cis-olefin $[\mathrm{CD}(+) 239.6]-$ (Z)-2 (see Table 2 and also compare Figure 8 with Figure 2 of the second paper of this series). ${ }^{2 \mathrm{~b}}$ This similarity of CD and UV spectra of $[\mathrm{CD}(-) 238.0]-\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-4$ to those of $[C D(+) 239.6]-(Z)-\mathbf{2}$ indicates that two methyl groups little affect the twisted π-electron structure of these chiral olefins as for the trans-olefins discussed above. Those aspects allow us to determine the absolute stereochemistry of cis-olefin 2 by direct comparison of CD spectra of olefins 2 and 4 . Since the CD Cotton effects of $[\mathrm{CD}(-) 238.0]-\left(3 R, 3^{\prime} R\right)-(P, P)-(Z)-4$ are opposite in sign to those of $[\mathrm{CD}(+) 239.6]-(Z)-2$, the absolute stereochemistry of [CD $(+) 239.6]-(Z)-2$ was determined to be (M, M). This absolute stereochemistry of cis-olefin $[\mathrm{CD}(+)$ -239.6]-(Z)-2 agrees with that obtained by the theoretical calculation of CD spectra. ${ }^{11}$ Our strategy and execution to determine the absolute stereochemistry of these unique chiral olefins thus brought fruitful results as described here.

Experimental Section

General Procedures. Melting points are uncorrected. IR spectra were obtained as KBr disks on a Jasco FT/IR-8300 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Jeol JNM-LA400 (400 MHz), a Jeol GSX-500 (500.0 MHz), or a Jeol JNM-LA600 (600 MHz) spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Jeol JNM-LA400 (100 MHz), a Jeol GSX-500 (125 MHz), or a Jeol JNM-LA600 (150 $\mathrm{MHz})$ spectrometer. All NMR data are reported in ppm (δ) downfield from tetramethylsilane, and the NMR data of C_{2}-symmetrical compounds are listed for a half molecule. Optical rotations $[\alpha]_{D}$ were measured on a Jasco DIP-1000 spectropolarimeter. UV and CD spectra were recorded on Jasco Ubest-50 and Jasco J-720WI spectrometers, respectively. MS spectra were obtained with a Jeol JMS DX-300/JMA$3100 / 3500$ spectrometer by the electron ionization (EI) procedure (70 eV), unless otherwise noted. X-ray single-crystal diffraction measurement was performed on a Mac Science MXC18 automated four-circle diffractometer. The purities of the title compounds were shown to be $\geq 95 \%$ by ${ }^{1} \mathrm{H}$ NMR, TLC, HPLC, and/or elemental analysis.

X-ray Crystallography. A single crystal was selected for data collection and mounted on a Mac Science MXC18 automated fourcircle diffractometer: radiation, $\mathrm{Cu} \mathrm{K} \alpha(1.54178 \AA)$; monochromator, graphite crystal. The crystal system, space group, unit cell parameters, and orientation matrix were determined. Data collection was carried out by using a $2 \theta-\theta$ scan: temperature, $20^{\circ} \mathrm{C}$; scan speed, $14^{\circ} / \mathrm{min}$; scan range, $1.75-1.87^{\circ}+0.2^{\circ} \tan \theta ; 2 \theta$ scan limits, $2-130^{\circ}$; standard reflections, 3 per 100 reflections; crystal stability, no indication of standard reflection decay during data collection. The density of crystals were measured by flotation using a CCl_{4} /hexane solution.
$\left(3 R^{*}, 3^{\prime} R^{*}\right)-\left(P^{*}, P^{*}\right)-(E)-(\pm)-1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-Octahydro-3, $\mathbf{3}^{\prime}$-dimeth$\mathbf{y l}-4, \mathbf{4}^{\prime}$-biphenanthrylidene (3). To a mixture of $\mathrm{TiCl}_{3}(523 \mathrm{mg}, 3.39$ mmol) and dry THF (4 mL) cooled at $0{ }^{\circ} \mathrm{C}$ was added dropwise a mixture of $\mathrm{LiAlH}_{4}(64 \mathrm{mg}, 1.69 \mathrm{mmol})$ and dry THF $(3 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then refluxed for 1 h . After a solution of methyl ketone $(\pm)-\mathbf{1 0}(237 \mathrm{mg}, 1.13 \mathrm{mmol})$ in dry THF (5 mL) was added, the reaction mixture was gently refluxed for 20 h . The reaction mixture was treated with dilute aqueous HCl and extracted with chloroform three times. The combined organic

[^5]layers were washed with brine, dried with anhydrous MgSO_{4}, and evaporated to dryness. The crude product was purified by a short column chromatography and successive HPLC on silica gel (hexane) to yield (\pm)-trans-dimethyl olefin $\mathbf{3}(17 \mathrm{mg}, 8 \%)$ as colorless prisms: $\mathrm{mp} 236^{\circ} \mathrm{C}$ (hexane); TLC (silica gel, hexane) $R_{f} 0.33$; IR (KBr) $\nu_{\text {max }}$ 3050, 2972, 2929, 2869, 1506, 1455, 1426, 1373, 1212, 1032, 952, $869,812,759,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.78(3 \mathrm{H}, \mathrm{d}$, $J=6.8 \mathrm{~Hz}$, Me3ax), $1.26(1 \mathrm{H}$, dddd, $J=13.0,7.1,7.1,6.6 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{ax})$, $1.88(1 \mathrm{H}$, dddd, $J=13.0,7.1,7.1,3.3 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{eq}), 2.67(1 \mathrm{H}, \mathrm{ddq}, J$ $=7.1,6.8,3.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{eq})$, 2.73 ($1 \mathrm{H}, \mathrm{ddd}, J=15.8,7.1,6.6 \mathrm{~Hz}, \mathrm{Hlax}$), 2.75 (1 H , ddd, $J=15.8,7.1,7.1 \mathrm{~Hz}$, H1eq), 7.31 ($1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, H10), $7.47(1 \mathrm{H}, \mathrm{ddd}, J=8.2,7.0,1.2 \mathrm{~Hz}, \mathrm{H} 7), 7.55(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.4,7.0,1.3 \mathrm{~Hz}, \mathrm{H} 6), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 9), 7.88(1 \mathrm{H}, \mathrm{dd}, J$ $=8.2,1.3 \mathrm{~Hz}, \mathrm{H} 8), 8.44(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, \mathrm{H} 5) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.6$ (Me3ax), 27.5 (C1), 31.2 (C2), 33.8 (C3), 124.7 (C7), 125.6 (C6), 125.9 (C5), 126.4 (C9), 126.6 (C10), 128.2 (C8), 132.3 (C4b), 132.3 (C8a), 134.8 (C4a), 136.3 (C4), 136.5 (C10a); ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY and $\mathrm{HMBC}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, see tables in Supporting Information; HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H} 3 \mathrm{Me}-\mathrm{C} 3 \mathrm{Me}$, H1ax-C1, H1eq-C1, H2ax-C2, H2eq-C2, H3-C3, H5-C5, H6C6, H7-C7, H8-C8, H9-C9, H10-C10. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{28}$: C, 92.74; H, 7.26. Found: C, 92.67; H, 7.26.

Enantioresolution of (\pm)-cis-1,2,3,4-Tetrahydro-3-methyl-4phenanthrenol (11) as the Chiral Phthalic Acid Ester. A mixture of racemic cis-alcohol $(\pm)-\mathbf{1 1}(205 \mathrm{mg}, 0.97 \mathrm{mmol})$, chiral phthalic acid amide (-)- $\mathbf{1 3}$ ($526 \mathrm{mg}, 1.46 \mathrm{mmol}$), 1,3-dicyclohexylcarbodiimide (DCC, $299 \mathrm{mg}, 1.46 \mathrm{mmol}$), and 4-(dimethylamino)pyridine (DMAP, $18 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was refluxed for 9 h . After insoluble material was removed by short column chromatography on silica gel (hexane/EtOAc 1:1), the crude product was subjected to column chromatography on silica gel (hexane/EtOAc 3:1). The diastereomeric mixture obtained was separated by HPLC on silica gel (hexane/EtOAc 7:1): separation factor $\alpha=1.10$; resolution factor R_{s} $=1.29$. The first-eluted ester 15a was recrystallized from MeOH to give colorless needles ($238 \mathrm{mg}, 44 \%$): mp 176-179 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+67.0^{\circ}$ (c 0.49, CHCl_{3}); TLC (silica gel, hexane/EtOAc 3:1) $R_{f} 0.35$; IR (KBr) $v_{\max }$ 2957, 2878, 1720, 1684, 1601, 1579, 1514, 1462, 1317, 1304, $1259,1168,1137,894,772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92$ $(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 1.22-1.30(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{s})$, $1.70-1.90(4 \mathrm{H}, \mathrm{m}), 1.95-2.20(2 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}$, m), 3.01-3.20 ($4 \mathrm{H}, \mathrm{m}$), $3.41(1 \mathrm{H}, \mathrm{br}$ s), $6.98(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $7.29(1 \mathrm{H}$, d, $J=8.4 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.39-7.55(4 \mathrm{H}, \mathrm{m}), 7.75$ $(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.13(1 \mathrm{H}, \mathrm{d}, J=8.4$ Hz); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0,20.0,21.2,25.2,26.3,30.6$, $32.6,34.8,38.0,44.9,47.5,48.0,52.4,65.2,70.3,123.9,125.2,126.9$, $127.5,127.9,128.2,128.7,129.0,129.3,129.9,130.5,131.8,132.1$, 132.5, 135.5, 136.5, 164.6, 167.2. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}$, 71.07; H, 6.33; N, 2.51; S, 5.75. Found. C, 71.31; H, 6.34; N, 2.73; S, 5.75 .

The second-eluted ester $\mathbf{1 5 b}$ was obtained as amorphous solid (263 $\mathrm{mg}, 49 \%$): $[\alpha]_{\mathrm{D}}-188.3^{\circ}\left(c \quad 0.99, \mathrm{CHCl}_{3}\right.$); TLC (silica gel, hexane/ EtOAc 3:1) $R_{f} 0.34$; IR (KBr) $\nu_{\text {max }} 2962,2880,1718,1683,1600,1579$, 1512, 1455, 1373, 1300, 1263, 1169, 1138, 891, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.22(3$ $\mathrm{H}, \mathrm{s}), 1.23-1.35(2 \mathrm{H}, \mathrm{m}), 1.70-1.85(4 \mathrm{H}, \mathrm{m}), 2.02-2.15(2 \mathrm{H}, \mathrm{m})$, $2.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.98-3.14(3 \mathrm{H}, \mathrm{m}), 3.15-3.40(2 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}$, br s), $6.93(1 \mathrm{H}, \mathrm{br}$ s), $7.28(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.37-7.53(5 \mathrm{H}, \mathrm{m})$, 7.75-7.79 ($2 \mathrm{H}, \mathrm{m}$), $7.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.08(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.8,19.8,21.0,25.1,26.3,30.6,32.7$, $34.6,37.7,44.7,47.5,48.1,52.8,65.2,70.4,123.2,125.1,127.0,127.6$, 128.1, 128.77, 128.82, 130.0, 131.6, 132.0, 132.5, 135.6, 136.5, 164.8, 167.4. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 71.07 ; \mathrm{H}, 6.33 ; \mathrm{N}, 2.51 ; \mathrm{S}$, 5.75. Found. C, 71.02; H, 6.50; N, 2.67; S, 5.46.
(3R,4R)-(+)-1,2,3,4-Tetrahydro-3-methyl-4-phenanthrenol (11). To a mixture of $\mathrm{LiAlH}_{4}(50 \mathrm{mg}, 1.35 \mathrm{mmol})$ and dry tetrahydrofuran (THF, 2 mL) cooled at $0^{\circ} \mathrm{C}$ was added dropwise a solution of chiral phthalic acid amide ester $\mathbf{1 5 a}(150 \mathrm{mg}, 0.27 \mathrm{mmol})$ in THF (5 mL), and the reaction mixture was stirred at room temperature for 1 h . The reaction was quenched with a minimum amount of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the supernatant organic layer was filtered and evaporated to dryness. The crude product was purified by HPLC on silica gel (hexane/EtOAc 10:1) to yield optically pure cis-alcohol (+)-11 ($52 \mathrm{mg}, 91 \%$) as
colorless silky needles: mp $119-120^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}+26.2^{\circ}(c 1.09$, CHCl_{3}). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 84.87 ; \mathrm{H}, 7.60$. Found. C, 85.09; H, 7.66.
(3S,4S)-(-)-cis-Alcohol 11. Chiral phthalic acid amide ester 15b ($70 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (3 mL) was reduced with $\mathrm{LiAlH}_{4}(24 \mathrm{mg}$, $0.63 \mathrm{mmol})$ to yield optically pure cis-alcohol (-) $\mathbf{- 1 1}(24 \mathrm{mg}, 90 \%)$ as colorless silky needles: $\mathrm{mp} 120^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}-26.5^{\circ}$ (c 1.01 , CHCl_{3}). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 84.87 ; \mathrm{H}, 7.60$. Found. C, 84.77; H, 7.59.

Enantioresolution of (\pm)-cis-Alcohol 11 as the Chiral Dichlorophthalic Acid Ester. A mixture of racemic cis-alcohol (\pm)-11 (101 $\mathrm{mg}, 0.47 \mathrm{mmol})$, chiral dichlorophthalic acid amide $\mathbf{1 4}(510 \mathrm{mg}, 1.18$ $\mathrm{mmol})$, DCC ($243 \mathrm{mg}, 1.18 \mathrm{mmol}$), and DMAP ($14 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was refluxed for 9 h . After insoluble material was removed by short column chromatography on silica gel (hexane/EtOAc 1:1), the crude product was subjected to column chromatography on silica gel (hexane/EtOAc 5:1). The diastereomeric mixture obtained was separated by HPLC on silica gel (hexane/EtOAc 7:1): separation factor $\alpha=1.18$; resolution factor $R_{\mathrm{s}}=1.31$. The first-eluted ester 16a was recrystallized from MeOH to give colorless silky needles (139 $\mathrm{mg}, 47 \%): \mathrm{mp} 204^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+55.1^{\circ}\left(c 0.18, \mathrm{CHCl}_{3}\right)$; TLC (silica gel, hexane/EtOAc 4:1) $R_{f} 0.39$; IR (KBr) $v_{\text {max }}$ 2960, 2880, 1721, 1690, 1590, 1558, 1456, 1340, 1300, 1239, 1142, 1062, 879, $761 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $1.22-1.30(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{s}), 1.70-1.78(2 \mathrm{H}, \mathrm{m}), 1.81-1.90(2$ $\mathrm{H}, \mathrm{m}), 1.99-2.17(3 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.6 \mathrm{~Hz}), 2.62(1 \mathrm{H}$, br s), $3.01-3.22(4 \mathrm{H}, \mathrm{m}), 3.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=2.2$ $\mathrm{Hz}), 7.30(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{s}), 7.42(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.1$ $\mathrm{Hz}), 7.50(1 \mathrm{H}, \mathrm{ddd}, J=8.4,7.1,1.3 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $8.04(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 18.0,20.0,21.2,25.2,26.3,30.6,32.7,34.8,37.8,44.9,47.5$, 48.2, 52.4, 65.3, 71.2, 123.7, 125.4, 127.0, 127.5, 127.97. 128.04, 128.8, $129.3,130.6,132.1,132.3,132.4,134.5,134.7,136.6,136.7,163.0$, 164.7. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}$: C, $63.26 ; \mathrm{H}, 5.31 ; \mathrm{Cl}, 11.32$; N, 2.24; S, 5.12. Found. C, 63.07; H, 5.35; Cl, 11.49; N, 2.15; S, 5.37.

The second-eluted ester 16b was recrystallized from EtOAc giving colorless prisms ($142 \mathrm{mg}, 48 \%$): $\mathrm{mp} 203{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-96.4^{\circ}$ (c 1.76, CHCl_{3}); TLC (silica gel, hexane/EtOAc 4:1) $R_{f} 0.37$; IR (KBr) $\nu_{\text {max }}$ 2959, 2888, 1717, 1694, 1587, 1554, 1453, 1346, 1290, 1251, 1142, $1079,868,757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(3 \mathrm{H}, \mathrm{s})$, $1.14(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.23-1.40(2 \mathrm{H}, \mathrm{m}), 1.75(1$ $\mathrm{H}, \mathrm{m}), 1.90-2.05(4 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.00-3.13$ $(3 \mathrm{H}, \mathrm{m}), 3.30-3.49(2 \mathrm{H}, \mathrm{m}), 3.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.29$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.1 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $7.49(1 \mathrm{H}$, br t, $J=7.1 \mathrm{~Hz}), 7.77-7.81(2 \mathrm{H}, \mathrm{m}), 7.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.99$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.9,19.9,21.1$, 25.1, 26.4, 30.6, 32.9, 34.6, 37.7, 44.7, 47.7, 48.3, 53.0, 65.4, 71.2, $122.9,125.3,127.2,127.6,128.3,128.6,129.1,130.9,131.9,132.2$, 132.4, 134.6, 134.9, 163.1, 165.0. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}$: C, 63.26; H, 5.31; Cl, 11.32; N, 2.24; S, 5.12. Found. C, 63.48; H, 5.27; Cl, 11.38; N, 2.18; S, 4.98.
(3R,4R)-(+)-cis-Alcohol 11 Derived from Ester 16a. Chiral dichlorophthalic acid amide ester 16a ($2.1 \mathrm{~g}, 3.35 \mathrm{mmol}$) in THF (70 mL) was reduced with $\mathrm{LiAlH}_{4}(382 \mathrm{mg}, 10.1 \mathrm{mmol})$ to yield optically pure cis-alcohol $(+)-\mathbf{1 1}(640 \mathrm{mg}, 90 \%)$ as colorless silky needles, which were identical with $(+)$-cis-alcohol obtained from ester 15a.
(3S,4S)-(-)-cis-Alcohol 11 Derived from Ester 16b. Chiral dichlorophthalic acid amide ester 16b was similarly reduced with LiAlH_{4} to yield optically pure $c i s$-alcohol (-)-11, which was identical with cis-alcohol (-)-11 obtained from ester 15b.
(3R)-(-)-2,3-Dihydro-3-methyl-4(1H)-phenanthrenone (10). To a solution of cis-alcohol ($3 R, 4 R$)-(+)- $\mathbf{1 1}(80 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added 4 A molecular sieves (200 mg) and pyridinium chlorochromate (PCC, $244 \mathrm{mg}, 1.13 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature for 40 min . After the dichloromethane was removed under reduced pressure, the residue was subjected to a short column chromatography on silica gel (diethyl ether). The crude product was purified by HPLC on silica gel (hexane/EtOAc 20:1) to yield optically pure methyl ketone $\mathbf{1 0}(\mathbf{7 6 ~ m g}, 95 \%)$ as colorless oil: $[\alpha]_{\mathrm{D}}-2.9^{\circ}\left(c 1.27, \mathrm{CHCl}_{3}\right)$.
[CD(-)237.2]-(3R,3'R)-(P,P)-(E)-(-)-Dimethyl Olefin 3. Optically pure methyl ketone $(3 R)-(-)-\mathbf{1 0}(600 \mathrm{mg}, 2.85 \mathrm{mmol})$ was subjected to the McMurry reaction with low-valent titanium made from TiCl_{3} $(1.32 \mathrm{mg}, 8.56 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(160 \mathrm{mg}, 4.22 \mathrm{mmol})$ as for the racemic methyl ketone $(\pm)-\mathbf{1 0}$. The crude product was purified by HPLC on silica gel (hexane) and further purified by HPLC (ODS, $\mathrm{MeOH})$ to afford chiral trans-dimethyl olefin $3(28 \mathrm{mg}, 5 \%)$, which was recrystallized from MeOH giving colorless prisms: mp $240{ }^{\circ} \mathrm{C}$ (sublimed); IR (KBr) $\nu_{\max } 3050,2972,2929,2869,1506,1455,1426$, 1373, 1212, 1032, 952, 869, 812, 759, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical with those of racemate $(\pm)-3 ;[\alpha]_{D}-446.2^{\circ}(c$ $0.22, \mathrm{CHCl}_{3}$); CD and UV spectra, see Table 3 and Figure 6; highresolution mass spectrum (HRMS), calcd for $\mathrm{C}_{30} \mathrm{H}_{28} 388.2190$, found: 388.2188.
$\left(3 R^{*}, 3^{\prime} R^{*}\right)-\left(P^{*}, P^{*}\right)-(Z)-(\pm)-1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}-O c t a h y d r o-3,3^{\prime}$-di-methyl-4,4'-biphenanthrylidene (4). A solution of trans-dimethyl olefin $(\pm)-\left(3 R^{*}, 3^{\prime} R^{*}\right)-\left(P^{*}, P^{*}\right)-(E)-\mathbf{3}(38.0 \mathrm{mg}, 0.098 \mathrm{mmol})$ in acetone$d_{6}(10 \mathrm{~mL})$ was irradiated by a high-pressure mercury lamp using a Pyrex glass filter for 5 h , during which time the photoreaction was monitored by ${ }^{1} \mathrm{H}$ NMR. After the solvent was removed, the products were separated by HPLC on silica gel (hexane). cis-Dimethyl olefin 4 was obtained as crystals ($16.3 \mathrm{mg}, 43 \%$), which were recrystallized from hexane affording colorless prisms: $\mathrm{mp} 169-170{ }^{\circ} \mathrm{C}$; TLC (silica gel, hexane) $R_{f} 0.20$; IR (KBr) $\nu_{\max } 3045,2955,2933,2857,1510$, $1451,1371,1126,1008,955,859,805,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.13(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me} 3 \mathrm{ax}), 1.26(1 \mathrm{H}, \operatorname{ddt}, J=12.6$, 7.3, 8.3 Hz, H2ax), $2.52(1 \mathrm{H}, \mathrm{ddt}, J=12.6,8.3,4.2 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{eq}), 2.85$ $(2 \mathrm{H}, \mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, \mathrm{H} 1), 3.63(1 \mathrm{H}, \mathrm{ddq}, J=8.3,7.3,6.8 \mathrm{~Hz}$, H3eq), $6.66(1 \mathrm{H}$, ddd, $J=8.4,6.8,1.4 \mathrm{~Hz}, \mathrm{H} 6), 6.84(1 \mathrm{H}$, ddd, $J=$ $8.1,6.8,1.3 \mathrm{~Hz}, \mathrm{H} 7), 6.93(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, \mathrm{H} 5), 7.15(1 \mathrm{H}$, d, $J=8.2 \mathrm{~Hz}, \mathrm{H} 10), 7.20(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, \mathrm{H} 8), 7.22(1 \mathrm{H}$, $\mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 9) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.5$ (Me3ax), 30.4 (C 1), 31.8 (C2), 32.1 (C3), 123.3 (C7), 124.0 (C6), 124.6 (C5), 125.6 (C10), 126.3 (C9), 126.7 (C8), 130.2 (C4b), 131.7 (C8a), 134.9
(C4a), 135.7 (C4), 139.0 (C10a); ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY and HMBC (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, see tables in the Supporting Information. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{28}$: C 92.74; H 7.26. Found. C 92.47; H 7.34.
[CD(-)238.0]-(3R,3'R)-(P,P)-(Z)-Dimethyl Olefin (4). A solution of trans-dimethyl olefin $[\mathrm{CD}(-) 238.0]-\left(3 R, 3^{\prime} R\right)-(P, P)-(E)-(-)-3(1.8$ $\mathrm{mg}, 0.0046 \mathrm{mmol})$ in acetone $-d_{6}(2 \mathrm{~mL})$ was irradiated by a highpressure mercury lamp using a Pyrex glass filter for 6 h , during which time the photoreaction was monitored by ${ }^{1} \mathrm{H}$ NMR. After the solvent was removed, the products were separated by HPLC on silica gel (hexane). cis-Dimethyl olefin [CD(-)238.0]-(3R, $\left.3^{\prime} R\right)-(P, P)-(Z)-4$ was obtained as crystals $(1.0 \mathrm{mg}, 55 \%)$, which were recrystallized from hexane affording colorless prisms: mp $154-156{ }^{\circ} \mathrm{C}$; TLC (silica gel, hexane) $R_{f} 0.20$; IR (KBr) $\nu_{\max } 3045,2955,2933,2857,1510,1451$, $1371,1126,1008,955,859,805,750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ were identical with those of racemate $\left(3 R^{*}, 3^{\prime} R^{*}\right)-\left(P^{*}, P^{*}\right)-(Z)-(\pm)-4$. CD and UV spectra (see Table 3 and Figure 8).

Acknowledgment. This work was supported in part by grants from the Ministry of Education, Science, and Culture, Japan (General (A) No. 07408032, General (B) No. 01470026, Priority Areas Nos. 02250103, 03236101, 04220101, and 06240204, Developmental Research No. 05554017, and International Joint Research No. 02044014 to N.H.).

Supporting Information Available: Experimental procedures for the synthesis of 10, 11, and 12, as well as their spectroscopic and physical data, and NOESY and HMBC data of $(E)-3$ and $(Z)-4$ (4 pages). See any current masthead page for ordering and Internet access instructions.
JA970669E

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, July 15, 1997.
 (1) (a) Tohoku University. (b) University of Groningen.
 (2) See papers of this series: (a) (part 1) Harada, N.; Saito, A.; Koumura, N.; Uda, H.; de Lange, B.; Jager, W. F.; Wynberg, H.; Feringa, B. L. J. Am. Chem. Soc. 1997, 119, 7241. (b) (part 2) Harada, N.; Saito, A.; Koumura, N.; Roe, D. C.; Jager, W. F.; Zijlstra, R. W. J.; de Lange, B.; Feringa, B. L. J. Am. Chem. Soc. 1997, 119, 7249.

[^1]: (3) (a) Harada, N.; Soutome, T.; Murai, S.; Uda, H. Tetrahedron: Asymmetry 1993, 4, 1755. (b) Harada, N.; Soutome, T.; Nehira, T.; Uda, H.; Oi, S.; Okamura, A.; Miyano, S. J. Am. Chem. Soc. 1993, 115, 7547. (c) Hagiwara, H.; Okamoto, T.; Harada, N.; Uda, H. Tetrahedron 1995, 51, 9891 and references cited therein.
 (4) See also: Toyota, S.; Miyasaka, T.; Matsumoto, Y.; Matsuo, T.; Oki, M. Bull. Chem. Soc. Jpn. 1994, 67, 1680.

[^2]: (5) (a) Harada, N.; Nehira, T.; Soutome, T.; Hiyoshi, N.; Kido, F. Enantiomer 1996, 1, 35. (b) Harada, N.; Koumura, N.; Robillard, M. Enantiomer 1997, 2, 303 and references cited therein.
 (6) See also: Toyota, S.; Yasutomi, A.; Oki, M. Tetrahedron Lett. 1995, 36, 6297.
 (7) (a) Bijvoet, J. M.; Peerdeman, A. F.; van Bommel, A. J. Nature 1951, 168, 271. (b) Bijvoet, J. M.; Peerdeman, A. F. Acta Crystallogr. 1956, 9, 1012 and references cited therein.
 (8) See also: Ibers, J.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.

[^3]: (9) Stewart, J. J. P. MOPAC 93; Fujitsu Limited: Tokyo, Japan, 1993.

[^4]: (10) For definition of enantiomer by using CD data, see: Harada, N.; Iwabuchi, J.; Yokota, Y.; Uda, H.; Okamoto, Y.; Yuki, H.; Kawada, Y. J. Chem. Soc., Perkin. Trans. 1 1985, 1845. Harada, N. Enantiomer 1996, 1, 81.

[^5]: (11) Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy - Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, and Oxford University Press: Oxford, 1983.

